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Preface

This report is a summary of discussions and rcading undertaken by O0.L. Weaver
and D.H. Sattinger during Cctober-Noveuber, 1979. During that pericd Professors
Weaver and Sattinger attempted to understand in what way spontancous symmetry
breaking arose in the context of gauge field theories of elementary particles.

They were interested in knowing whether techniques of bifurcation theory could be
applied to the problem of spontanecus symmetry breaking in gauge field theories.

It was their feeling, after some discussions, that the symmectry breaking used by the
physicists (a procedure known as the Higgs mechanism) is not precisely a bifurceticn
problem in the usual sence of the term, but more a matter of fixirg a gauge and
thereby reducing the aniount of symmetry of the problcm. In other words, it is

not really a matter of "spontaneous;' gyrmetry breaking. Sattinger and Weaver

felt that it would be useful to compile the results of their discussions in the
present form for possible future reference.

They thank the U.S. Army recearch office for their support in these studies.

Minneepolis, Minresota
November 1980
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Electrodynamics and Abelian Gauge Field Theories.

0. Units of measurement.

In mechanics there are three fundamental quantities, mass (m), length (L),
and time () , in terms of which all other quantities may be measured.
For example, velocity is LT-I » energy is m!.?'r"2 » Aaction is nba'r']' .

3 In quantum electrodynsmics there are two characteristic quantities,

namely c¢ , the velocity of light, and h , Plancks constant, which has

the units of action (energy X time). There is no third characteristic

quantity, as is often the case in fluid dynamics, so the equations of
electrodynanmics ceannot be written in a completely non-dimensicnal form.

But if we choose c¢ as a characteristic velocity and h as a characteristic
action, then h and c¢ disappear from the equations of quantum field
theory, and all quantities can be measured in terms of one unit, for example
time. Since h has dimensions of energy X time, setting h=1 in effect

wakes the dimensions of energy 1. Similarly setting c = 1 gives

length and time equivalent dimensions. From E = e (or E = % uva)
we see that, with ¢ = 1 , mass has the dimensions of energy. Recalling
that ezlhc is a pure number (the fine structure constant when e is
the charge of an electron) we see that charge i{s a pure number in these
units. .

Finally, in this choice of units the energy and momentum operators are

J1 b -l D

| E- c d ° ¥ cdxy ° %
The Y-vector x* 1is x°-t . xl =X, xa =y, x3 =g . "a
i -1- z ‘t




1. Euler-Lagrange equations

¥ b MR oeon

The equations of motion of ficld theory are derived from a principle

P e

of least action

AR

8L =0 (1)

where L= [{ff £(+%, 002 ataxtaxPaxS

a=1,...,N, »4=0,12,3, and du = ;:Tb' . The lagranian density

has dimensions EL > , so that L has the dimensions of action. d .
transforms as a covariant 4-vector under a Lorentz transformation. The

Euler-lagrange equations &L = 0 are

.9_‘: - dp —-'O!T = 0 (2)
¢ d(dur )

2. Currents and Conservation lLaws

Consider a variation in the lagrangien due to a continuous trans-
formation group acting on the fields " . Differentiating at the ideatity
we get |

stz Mgyt DL_pp ¢t (3
a CR) "

: If the transformation group is spatially independent (i.e. & gauge

O o e e A R



4
1

transformation of the first kind), then & “'. = buﬂa . Rurthermore, if

+* 1s & solution of the Euler-Lagrange equations, then (2) holds, and

(L2 'Y (> 4 a
S d ] ~—~——] 8% + ——— D B
“( o(o“v‘) v(3,¢") %

a
- °u(f ;%f;.—,) ol I ()
Defining & =& —2£— 8s® , ve get
a d(aut)
'b“:I“ = &L (5)

If &£ is invariant under the given transformation group then 3L =0

and we obtain the conservation law
. “J'» =0 .
This is a szpecial case of Noether's theorea.

3. Mass terus

Quadratic terms in the lagrangian density £ correspond physically
to mass terms. To see this let

2=30, 4% - ud) . (6)

R TR AL ANy« % A s
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£ has the form kinetic minus potential emergy. (Actually, energy/unit

volume). The Euler-lLagrange equations for £ are

Dad+§-g=o (7)

where
2
O =sp*=22-a .
1) o

ip x¥*
Now look at a plane wave & =Ae P

“z [+ 1= --o.—
pux P X + Py X Et -p- x .

*= &P g, = (E-P) .
We find

(T4 - 24 . (8)

The equations (7) descride a free, relativistic particle. Comparing
(7) and (B) we see

% - - -

For a free relativistic particle 32 = 1:»2 + m2 , and therefore ' 1!
3




N

2
dU a‘ i U”a%_

wvhere m is the rest mass of the particle.

In this heuristic argument we have tacitly assumed that a free particle
may be formed as & superposition of plane waves; hence the equation (7)
i8 linear and U is quadratic.

4. Charge

To describe charged particles we use a complex scalar field. The
Lagrangion density is

£=04 8% - ué.d) .

The equations of motion are then

4 25 -0

¢

and for a free particle U =n° b4 .

This Lagrangian density is invariant under the gauge group
UL): ¢ =@}, §"~eI9" where ® 1s resl. Let's compute the conserved
current J* . Taking M- dana 9% = ¢" we obtain
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= (48187 + 0,418
= 3(( 896 - (2*)4")

In particular Jo =2 In étdv* is the charge density. HNote that if 2

[}
is to have dimensions E/L3 ~ 1™ 4 must have dimensions 1 % ; then

Jo hes dimensions v S~ &5 .

%. Hurmiltonian formulation

" The Hamiltonian density is obtained from £ as follows:
Define 1 = A . Then
.a
d(dy)

¥ = B0 - &
n

» »
In our case, = = oL = b% s T2 OOJ . Thercfore

3(d $)

¥ =% 2 d + 2% 0 b - £
= (07 (0,8) + 96 - vb + u(d",p)
axn + 'v"b* - b+ u(b*,b) .

"Quantizition" means interpreting x.b as self-adjoint operators that obey

Lx(x'),b(x)] = -26{x"~x) .

e
o
*
¥

3

D U+ P R s

7 PERTIRTS T8 s+t

*

T P b o o I TV T T ST - e e




T

-

i St oo A g A ¥ RATETS

The space on which they operate is lefi for later. For now we look at
the current, specifically, at J°.

I%x) ~ -4(b'n - nb)
Because a%; IJo(x)d3x =0, IJ°(x)d3x i1s a constant operator.

6. Gauge transformations and electromagnetism.

Clessical electrodynamics is invariant under the gauge transformation
A (x) =-A(x) +d A(x
LX) = A (x) 43 A,

for the only observable quantities are the field strengths

rw = vau - b“A v " In quantum mwechanics we must determine the correspond-

ing gauge transformation of the wave function. Consider the case where
the scalar (electric) potential 1s shifted by a constant: A A+ )
Then the energy of a particle_.of charge e 1is increased by eA . If
that particle is described by a"wa.ve function ¢ , what operation must

we perform on § to increase the energy by el ? Recalling that the

energy operator 4in quantum mechanics is - -} -6% ve gee that the trans-
formation ¢ - e”' eAt ¥ is the required gauge transformation. In general,

then, we should likxe our theory to be invariant under gauge transformations

of the second kind

5 S N g1 F T

i s (L
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+%(x) ~ le A(x)va(x)

(9)
A“(x) --A“l + b“A '

Note that §" then transforms as

° - eHe A(x) 'a’ )

In our exaxple above this suggests that a particle described by the field

'a might be one of opposite charge, since its energy is decreased by

eX . However, it is not quite correct to interpret ¢ and § as

representing oppositely charged porticles when viewed as quantum fields.

7. S8tructure of gauge inveriant Lagrangians.

The variation &f of £ under a gauge tramsformation (9) 4is

(o 4

(-teant®) +
© b(o“v‘)

g
.o
I

( 1e,0,(n ¢%)

[ 4
-
»

“

L
+ d A+ : d0u A .
OAM ") 0(d Au.

. - - . %= a .

a a a
ab“' -b“a' = -b“(ie AY) . 8o

ORI L T e
30 SRR
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=X [:‘i“.'(-ie. M‘) + b4 (-iea Abu")

&
aldey b(b“' ) |
3
{2 4 a L
+ (-ead Idp A+ = du A
(o™ OAw

Dl
+ m d oA .

Now assunme t' is an extremal; then

X _, oL
- Op = Q
X o d(dut®

and

‘Bl = AD z-iu—l‘%-"
¥a o(dut )

L o L
jf(bﬂl\)[ ;L‘ -1ea Y R )

o
+@.0A 57 T AT = ©

Since A is an arbitrary function of space time we may draw the following

conclusions:

1) From the choice A = const. we derive the conservation law




S RO

-—a

e sba

L re

U

dpEiea 9% =0

a 2 out™)

or . (10)
dp ¥t =0

2) The coefficient of bu-A must also vanish, which leads to the
relationship

L gp
a9 (1)
vhere J¥ =1 T ea ——b-‘%— t”
a o(duy )
3) The term (d DN -b'(bv'b_fﬂ must vanish, so
0L
3T AT : (12)

must be anti-symmetric in y and V. 7This means that the dependence of

4 on vau is of the form ,t-:t(bvau,-bu,kv) .

From

dL L a
== . T iea
e d(aue™)

we get that £ depends on A, ; *a and Du" only through the quantitics

D“"' - o“v‘ + fea Ap® .
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These a3 called the gauge covariant derivatives of ¢ . The Ap's are i
Wen ralled the gauge potentials, and the four-curl ‘
Fo=0A -3A 1s called the field strength. Under gauge transformations z
)4 [T RR")

IO

of the second kind these quantities transform as follows

R4

'.a - .-ie‘;\ ‘a

A3 R W

A'' = A +DJ A
» B L

D¢2) = -ieg A a
(“') e D9

€, ey

1
P,=Fy -

ey, T WY

-

The gauge covariance of Du weans (D';&"). = D“b o .

R, TR

8. Charged scalar field coupled to the electromagnetic potential.

T T v 2

The Lagrangian = bul:*b“b - U(b.b*) 18 now replaced by the gauge
covariant Lagrangian

Dub D%b - U(h,b") + a(r )

vhere D* = 3" + 1e A® . The equations of motion are derived by teking
variations of £ relative to &.b’ and A“ . To determine d(F“v)

note that our equations must read

L M Y
z % loomT = by " 7 '

The left hand side of this equation should be o°p°"' . e(x-*w) is the

- i

lagrengian of the ficld equaticns in a vacuum. In the electromagnetic

case e(rw) ) %FWF“" .

AN

B :
. - B . e —— - - L —
- * : N : . . . . q 4,.<m5-\:\- s SRR,
i R S e by L e i SRR L e e e ENEA W A RS e
- . i . - g ul kA Ry v % hadka A 2R kane oo o LAl e Lo st S
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11 -~ Non-Abelian Gaure Theories.

Suppose we wish to describe a system of spinless particle fields
which we denote by a vector field @ . 2 Vu -V where V is an
n-dimensional vector space. We essume the Lagrangian is invariant under
a gauge group & , s0 that {.((p,b';t?) = i(v'.b.;?') where @' =gp,g€ 4 .
By analogy with the electromegnetic case we suppose that these particles

2 interact with a force field in a gauge covariant way, that is, so that

) the complete Lagrangian is invariant with respect to geauge transformations

of the second kind. In order to achieve this we zust replace the partial

derivatives b“ by gauge covariant deriﬁtives D“ given by

Dusbu+Q\b

where the Q s are matrices. In fact, if the infinitesimal generators

of the gauge groupare v, k=1,...,m wec may take Q“ in the form

Gauge covariance then requires the relationship

(0} g') = (D, g

or

(v, + Q"; 289 = 8(d, +o: 08 -
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This leads to the transformation law

1, gd 5'1 .

Mo 4 (24 -
T, = T

Remark: Let us verify that g b g'l is an element of the Lie algebra of
- W

S . Writing

a(x) geol(x)-rlwa(x)'rz +.. .+om(x)1-m

we have

= -f(AdA) A , vhere

Mow for any matrix A(t) , eA(t) adf e'A(t')

z 2
f(z) = S22 =24 2 Lo e hus £(AGA)A =R +5t{AA) 45 (AL[AAD 4.

Applying this relationship to the case at hand we have

-1
g QET- = -f(AdA) n

do
where A = qlql +.. *om"u . Since A bdelongs to the Lie algebdbra,
> -1
g 'j—i‘ also belongs to the Lie algebra.
do

The b-potentials Q(; are the analogs of the electromagretic 4-potential

Ay . The analogs of the electromagnetic ficld strengths are obtained

by considering the commutation [Du.Dv] operating on @ . In the




“1h-

electromagnctic case D s = c“ + eA“ and
= = A - .
[Du'nv]“’ eF, @ e(bp v OVA“)QP

The left side is clearly gauge covariant so therefore

10 T . 0 -6
(F“vnp)- =e F, 9= rpv e ¢ and Fu\, = e t‘w e a Fl-N . That is,

the FHN are gauge invariant in the Abelian case.

In the non-Abelian case, however, the commutator is

x o
[0,:0,) = ed Q; - 0.R )7y
2 «a
+ & @ lrgurg)
g

« a Y oBY
eld, Q,-d,Q +eq QC ],

ch

where are the structure constants of the Lie algebra. The field

strengths are given by

- a a B .Y cOBY
K=o, -d,a+eaalc

These field strengths transform according to the law

'
Fa

' R
pv a " E‘:v €% &

e

A ao e G2 Tith atad nalla S




o et e et A A AR AoV S 3 St il RS i o R AR NS0 530 AN ol 54 35 I it st s 8201 o 0y T gl

In the electromagnetic case the quantity FWF“" is quadratic in

the derivatives 2 uAv and invariant under gauge transformations. In

the non-Abellan case the quantity

i =08, ) (P )

is also quadratic in the derivatives. (Of course, there are other

invariants as well; if we write

-1

[ ]
then the matrix transforms as Pp.v = SFW' g and det Fu,v is equally

an invariant under gauge transformations.)

Equations of Motion

The equations of motion for the free Yang-Mills fields are derived
in this section. We first summarize the notation we have already intro-

duced.

e VA e i 4

The gauge potentials Qp(x) take values in the Lie algebra of the

structural group G , and we write thenm

Q“(x) = Q,::(x)'l.‘a .

The field strengths F“v(x) are obtained from the potentials:

w7l b Vi e L

(Y AR

L] .
’.\
e —— et - R

RN e T - — : Ce- e ey ), L0
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a
Fw(x) = Fw(x)i“

£ () = 8, Q0(x) -3, (x) +elQ (x).Q (x)1° .

It 1is often convenient to write instead

abe

a b (
[Qu(x).Qv(x)] = Qu(x)q\,(x) c
where €2 are the structure constants of the Lie algebra of G .
Remember that while Q“(x) and Qv(x) do not commute, Q: and Q:(x)
do: they are ordinary (real) functions.
The Lagrangian density for the free fiélds is
1 v
L2=-f F:v(X)F" (x)

= - p I (0P

From it we obtain the field equations in the standard way:

O Dt
b - = O .
“ald oy %
Now
-

a
2(0,2%)
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The calculatiom of -ﬂ; is a dit longer, giving

S ;

¥

!

A

m 1

0 ;

i

¥

Thus the equations of motion are :
T 80V T8

.5“!"““’ +eqQ, ¢ =0

or, rearranging indices,

£

H

d P 4 o QF PO PTP Lo

» » 'g

These are the equations we sought. In matrix form they are ?

- 3P0 4 e[Q , /0] = 0

p (1) !

g

or ]

DY‘W-O .
“»
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IYI. Massless particles in gouge invarient theories.

We have seen that quadratic terms in the Lagrangian are interpreted
as mass terms for a relatistic particle. If q:a' are a set of particle
fields and V(g*) 1is the potential, then, shifting the @ to a critical

2
point of V end recombining the ¢ ‘s 8o that the Hesslan -2V s

Ve P

diagonal, the eigenvalues of this Hessian act as the squares of the

masses in this theory:

2y

3509

- Z(PP ¢ R ..

In order that all the masses be real, we must cperate at a locel minimum

of V.

Coldstone Bosons. If the Lagrangian -C(tpa.b“tp‘) is invariant under an

N-parameter gauge group & - that is 9 = T(g)cp‘ for elements g
of a Lie group g , then V(Tg ¢°) = V(¢a) is an invariant function
under the group action. Consequently we must expect that in general
some of the eigenvalues of the Hessian of V at the ceritical point are
going to vanish. This can be gseen as follows.

Let the group parameters be 8ys-- o8y and suppose
‘P{ = 13(511 <o o@u)‘PJ

is the group action. Then




S o vw v XTCTRIY JE RN

b AR P AN s i R

V(g oe) = Vlgyee0gy) -

Differentiating once with respect to the variables cpJ we get

1)
1 or
[\ dV 1 n
T T e (C? cees® )
By M T

where Tid =T, J(gl,. . .,gu) . Now differentiate with respect to the group
parametfrs 31""’511 . We get

2. . dp! T
dV T Vv ij
? ir bg& 13

At a critical orbit vV = 0 so this reduces to

v X v o
d9,00, 38, ~ Bp0% rs %

at the identity, where L:. is the Lie derivative

j I." - M.rs
] s dat

81.-.-%n-° .
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v
Therefore the null vectors of the Hessian s—5— are the vectors
O, 09,
L:’ Py but these vectors spen the tangent space to the ordbit of critical

points of V under the group sction. The dimension of this tangent space
is v=dimJd - din S, where J is the isotropy subgroup of the
critical point, and dim 4 4is counted as zero if the isotroepy subgroup
is discrete.

If we choose as a new set of basis vectors in ¢-space the eigenvectors

22V

g
° bcpiwd

» the normal formof V 1is

' 2 2 2 2
v(vl..-nvn) t 4 mv*lvv-}l *o-.* Dn vn ’

and the fields L JERRREL W have no mess terms. They therefore describe

massless particles, called Goldstone Bosons. They are extraneous because

they do not really occur in nature.

Massless Vector Mesons

Massless particles also arise in quite another context when one
tries to couple vector force fields to scalar fields in a gauge - »
invariant way.

Suppose we are trying to construct a theory for a set of particles
Ql',...,qan which is invariant under some gauge group 4 of dimension N .
By analogy with the electromagnetic field, we couple force fields Q: N

a=)l,...N to the cpl'....gp“ in a gauwge-invariant way - that is, so
that the total lagrangian

e NI - . o P T~

O PO S gt ot

D i ok et S

e T S T

moprar el

T A P PP O PR 1
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i i
A¥ .9 .Dg)
SR R

is invariant under gauge transformations of the second kind

where the ma are functions of the space-time variadbles x and the
Ty Aare the generators of the gauge group.

As in §II this is accomplished by introducing the gauge covariant
derivatives

a
D”=5”+eqh1-a

vhere the Qz are the gauge potentials. The Lagrangian
PR ,g(!?w » q,', D“w‘) » 18 then invariant under gauge transformations
of the second kind provided the Qz transform according to the rule

' - .-1 -1 .0
Q” sQus tede (Q“ Q“‘r.) .

If the dependence of £ on D“cp' is of the form D“q;‘ D“q;‘

then, expanding out, one sees that there are no quadratic terms in the

Q: « The particles associated with these fields are thus massless -

called massless vector mesons.

N RTINS N 0 L RN T

IR TDY R

S PRI TN A e LD
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These massless vector mesons are equally undesirable, for they

signify long-range forces (forces that decay like 'i-]:" rather than the
LS o .

short range forces that decay like which are typical of nuclear
forces. That is, we expect that the force fields which describe the
interaction of the p-particles to de transmitted by massive particles.

We thus see that massless particles are inherent in any gauge-
invariant theory. Massless particles occur both as vector mesons of the
fields and as Goldstone bosons of the particles. These massless particles
can be eleminated (or at least reduced 1An. number) by a procedure due to
Higgs which is usually called f'spopta.neous symetry breakdown”. What
1s involved is to breek the ga-me-invariance of the theory by fixing the
gauge in an sppropriate way so as to eliminate the massless terms. In
fact, it should really come as no surprise that in the end we do not want
that arbitrary choice of gauge. If the gauge were in fact arbitrary,
then the distinction between the particles described by the ¢'s would
be lost: Max would see a proton where Sam sees a neutron. The nature of
the particles of the theory would simply be an arfifsct of the choice
of gauge - that iz, of the way in which they were measured.

8o the duilding of a gauge invariant Lagrangiaen is only a preliminary
first step, not an ultimate goal. The next step is to fix the gauge in
a way that eliminates the unwanted wassless particles of the theory.

If the field theory is to include the electromagnetic interaction then at
the end we still vant the theory to be invariant under a one-parameter
gauge group. On the other hand, if no massless particles are to occur, the
finsl gauge group should be trivial (or at least discrete). |

KB (PR AR

o e e e




Symmetry breaking and

Elimination of Massless FParticles

In this section we discuss a method, generally ascribed to
Higgs for eliminating scame or all of the massless Goldstone bosons and
giving wass to the massless vector mesons. The procedure may be outlined
as follows. If U(p) 4is the potential for the boson fields o , let us
first minimize U(q) . Suppose U takes its minimm at a point
ac B (¢ now is regarded as a vector in B") . Due to the gauge
invariance of the theory, U(Tgg) = U(9) for sy ¢, so the action
of the gauge group on & generates an ordit (Tg a]} = 6a . As we
observed in the previous sections, the tangent directions to 6a give
the Goldstone dosons.

Let us first suppose the gauge group acts transitively on the
¢-space, 80 that 6a = R™ . Then ve can fix the gauge so that the
minimm ¢ has the form

<«.00

For example, suppose the gauge group is SU(2) and that it acts on

R via the representation D' . Then ve choose the gavge (i.e. we

fix a particular gauge) so that the particle field has the form

0
¢={0

&

everywhers in space-time.
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Now the Lagrangian takes the form

LR P L (09 (M)

+ e2(<q§>2 + <o§>2)<v3)2 + U(¢?)

wvhere (Qi)a means Qi Qa" ; etc. Now in thig form, where the gauge

0

has been fixed, we minimize U(p) where ¢ = :3 . By assumption this
3

occured at ¢~ = a . 8o write q’3 = a+p where p 4is a function of x .
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Then < has the fom
£.-1F F“v""l‘(b )2
1 pv 2 “P

22,22 1,2 U'(a)p?
+ea((Qu) +(Qu) ) + 5 $eon

+ (6 +200) (@)% + @)%

From this form of the Lagrangian we see that there are no massless
bosons and that two of the three vector mesons have acquired a mass

20232 .

The final Lagrangian still possesses a gauge invariance of the second
kind, but where now the gauge group is S0(2) - the rotations about

the 3-axis. This group is in fact the isotropy subgroup of the minimum
o )
OJof U . For these transformations p'=p and b“p ''= b“p is
a

therefore gauge invariant. Let us see how the Q: transform under this

restricted gauge invarjance. The Q's originally transformed according
to the rule

’ = "1 - -1 '1
Q“ [ Q“s (b“a)s +g b“s

Now restrict g to a gauge transformation of rotations about the 3-axla§




. o(x)13
g(x) = e
O(Jt)13 ) - cy(:'t)-r3 -a(x)73
: Then dg= d dlr; = o e = .
' 8= ( L0738 (6“8 ['4 e (bu )1‘3 (0u0)13
Now note that
: 013 --O'rq
e we ~ =cosofl+sin 07,
oty -0y
e 72 e = -sinorl+ cos 012
O‘I‘ -OT i
i 3 3 =
e 13 ] 73
Therefore
Ql & = Ql(cos ov, + ainor,)
s & ® 1 2
Qz(-sin or, +cosorT,)
i b 1 2
QB 1, + (o)
i w3 W 3 ’
and

Q:' =cosg Q - singQ

(-
o

R
*

[ ]
Qﬁ = s8ing Q + cosoQ

[
N

)
A 3

3' a3
Q“ Q“ + b“o

By
B ’ . ————— - N gt e AEmteEe e .._._._,} N
- . . , ) ¢ e e S . Iy .,
. S e i TR T TR A e s gl . L. . . ;- " & X - > e 2
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Therefore under the restricted gauge transformations the p-field
is invariant, Qi and Qi transform as a rotation, and Qa transforms
as the clectromognetic potential. Note that Qz is the field component
assocliated with the massless perticle.

In summary, we have eliminated the massless Goldstone bosons
and given a mass to two of the vector mesons by dreaking the gauge
invariance pf the theory - that is, by fixing a gauge. The resulting

theory then possesses the gauge invariance of the isotropy subgroup of

the minimum of the potential U .
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Spinor Analysis and Covariant Wave Equations

Hotation.

Points in space-time are denoted by x , coordimates x*(y=0,1,2,3).

The vector between two such points, s=x-y , defines a relativistically

invariant metric denoted by (s,s) :

(s,8) = g, ¥ = (9)° - 3-8 .

1l
The meétric B ™ ( -l _1) . There are four classes of intervals:

(a) (s,s) >0 Time-like
(b) (s,s) <0 Spacelike
(¢) (s,s) =0 Lightlixe (s  0)

(a) s =0 HNull vector.
0 0
Classes (a) and {c) have two pieces: s >0 and s <O . The set

of points equipped with the above metric is called Minkowski spece,

or space-time.

§1. The Poincare group & is the set of linear transformations
of Minkowski space into itself such that the distance between any two
points is preserved. Thus

@: M-M
x,y - x',y'

and

(x'-y',x'-y') = (x-y),x-y)
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An element of @ is written (a,A) and its action on a point
x€EN is

(8,N: x -x' = a+AX

x P gt xv .

Thus ‘'a' 1is o translation in space-time ani A is a hxY4 real matrix.
Exercise: Show (a,A)(a',A') = (a+Aa'),AA’') . Important subgroups of
@ are the translations, T, ={a,I)] with I the unit matrix, and

the Lorentz group, L = {(0,A)} . Exercise: Show that T, G -

§2. The Lorenz group is also the subgroup of GL(%,R) whose elements
A Obey

ABA=g .
Exercise: Show this. Written out explicitly it ia

B A7 Hhw, 0o _
A VA‘T“LO.(A)V BMAT B\)‘I‘

02 3 2
Exercise; Show that (A ) =1+ ¢ (A") >1
° T

Exercise: Show that det A = 1.
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The last two exercises and the observation that Aoo and det A

are continuous functions of A show that L 1is3 split into four disconnected

parts: L:_—A°°21.det/\-+1

L, - <1, det A=Wl

- 21, 8ta

$

L. - A, <-1,deta=-1

Ifweput P = (1-1 0 ) sy T = '11 0) » then we can write
0~

t t t 1 1
L=L+ TL + PL, +PTL +« The component L, 1s continuously
+ s, — ot +s +
] $
L . L L

comnected to the identity and is called the proper (det A = +1) ortho-
chronous (A°° >1) Llorentz group. It is connected but it is not

simply comnected, as we will see below.

§3. The Lorentz growp Ll is a homoworphic image of SL(2,().

We establish this result in this section. We first map Minkowski

space into the set of Hamiltian 2x2 matrices:

T G e R P T

P Tt S o

2 62
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B (*) x -x =x"

where o, = ((é g), (2 3). (g -g) s (; _g)) = (I,3) . Using the

metric g‘w we can raicse the index on 0“: = (1, d) . We can find
the set (I ,-3) another way which will prove useful later:

let ¢ = (_2 3) = ¢® . Define au =el o,¢ » and

au = (1 ,-3) , " = (I,3) . Sowe have

o, = (1.3) = (I,-3)

g, = (1,9 #=(1.9 .

ay '
Now Trouova'rro“o =28 , Tro

*
v =2g,, - Thus the msrping )

can be inverted:

*2) . x“ =

Ojr

Tr x 6"

The inner product (x,x) is captured easily:

»3) (x,x) = det x .

Finally, we associate A€ L:_ with A€ SL(2,C) as promised in the

opening sentence:
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x' =AxA" , A€SL(2,C)

is linear and preserves the inner product because det A = +1 . ([We

could allow det A = ¢, but this gains us nothing, for

e"“‘),2 Imps x ~x .] Thus, if

we have

Exercise:

Exercise:
Exercise:

(+1}.

Exercise:

A X =x' = AXx

*
P o Zrraxa” g
v (i * o
= x (2TervA o")
=x" AM®
x N .

Find A for A€ 80(3) .

Find A for A = boost along z-axis.

Show that the mapping A - M is a homomorphism with kernel

Prove that A€ L: (and not, say, L‘_ ) .

§4. Spinors I. The group SL(2,C) acts naturally on a two dimensional

v
complex vector space V = [(vl): vial via
2

DS . e
s e oo L, . . P L AN h ’ . B Ll <ol
] bt i Mo T S Rt i L ol o S5 sach, SAEA S e B
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v _ B .
vasnavb. a and B =1,2.

It A€ SU(2) then v transforms according to the two-dimensional

representation 1)]"/2 of SU(2) , so we say v carries spin 1/2 . It is

a two-valued representation of I.: s Tor A=Ay Thus

A Vov' = + Av , although A: v-AV .

a, a

Consider the product v_v = G o - This transforms like
12 12 .

A: ®=AAw =
' - A
‘e, A“J.”l a8, B8,

Notice that « is symmetric in its indices. On restricting A to SU(2)
we see that o is the symmetric product of two spm% objects, so
w carries rpin 1 . Further, this is s single-valued representation of

?
L, .
objects belonging to VV ... V, {.e.

This object @ belongs to V® Vv . More generally we construct

e, .0
in the k-indices Ay @y = 1,2 . These are called spinors with k

undotted indices. (We will get to dotted indices below.) Using the

» totally symmetric

matrix ¢ introduced in §3 we can raise and lower indices
13 01

e’ =(_,0

vascmvp ' Yy, -cw ve H ‘12_1. o ™ -1 . A




(To keep signs streight we reed a convention for ¢ with upper and

lower indices.)

55. Spinors II. There s arother "natural” action of SL(2,() on a

. v
two dimensional complex vector space V = {(v]‘ ): v.ec):
2 Qa

A: v - Av

V. v =Rk v

a a G388

¥hen restricted to SU(2) this is equivalent (though not equal) to the

action discussed in the preceding section.

aa) 01 01)_
A€ 8u(2) A =(Fc’x A{_l o)= (_1 o] &

so °1/2 = 51,/2 . In fact A€ = €A for Ac SU(2)

€ A€ -1 (At')'l when det A =1 . As before we can construct
cpinors with { dotted irdices belonging to vev ...@V that satisfy
w—d
{-factors
A: w ~w' - =A w .

...0“ aLsL Bl.”.BL

Again, we muy usc ¢ to raise indices




g
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’ We stress: as far as SU(2) is concerned, spinors with { dotted or i
L undotted indices carry spin {/2 .
§6. Spinors III. The general case is a spinor with k undotted and
{4 dotted indices, symmetric in each class separately. An example is :
x itself: “
A~‘:_:-x'=AxA' ,
. - ;
v o - aO . BO . al . *® Bl :
Xap = A Ag Xapr “Ay Xgpe(A) g ’g

Here (k,t) = (1,1) . Under SU(2) 1t splits into a spin 1 (%)
and cpin O(x°) part. That is,

(k"",su(a) = (k)®(4) , (k) is the k+l dimensional

unitary rep of 8U(2) . Thus

T e et

(""",su(z) =(knt)B(k+L-2)0...0(]k-2]) .

Again we may raise indices with ¢ . It is often convenient to use
epinors with all undotted indices lowered, all dotted oncs raised:

B,... B ;
i P - 3

01... ak




,‘ The transformation properties are

A: w - W'
F X, ...0 ap. aB, B...B
w'al L'AaB"'AaB All. A“"wl ¢
01...(& 11 nk Bl ..Bk

where A=eAel, (R)ca . e X PP

Exercise: If A" =A™}, howis A related to A ? Hint: A is

. J w2 o
unitary, so work this out for A = ( o et ep/a) and

A g(c 6/2 s ef2

) o Then all unitary wmatrices may be found by
-89/2 cg/f2

composition of these.

In fact, ¢ 1is precisely
the matrix P such that AP = PA for A€ SU(2) .

rrReT e T
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VI. The Relativistic Gauge Group and its Lie Algebra.

We begin by reviewing the results of §2, this time with somewhat

1

greater precision. The gauge group J consists of finite transformations
a(x)

g=e where w(x) = m‘(x)ra i1s a function on space-time with values

in the Lie algebra g of the structural group. The «

s are a basis

for the Llie algebra of the structural group.

The gauge group acts on fields ¢ through a representation D
of & as follows:

8: ¢ *U‘O =¢' =D(gly

(4")® = 0°(g)v . (6-1)

The matrix D(g) = exp m‘(x)!. » where T_ are generators of the

representation of g associated with the rep Dof S . We take r‘

to be skew-Hermitian and «®(x) real, so that D is a unitary rep.

The clements of J are therefore the g valued functions on

- -~

B e
i T T A ikl B

Vu . The commutator of two elewents w,g€ .! is thus

[@o) = p = a(x)e*(x)c*™,

where c.bc are the structure constants of g We call
algebra.

e

the gauge
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In general the ¢'s may also transform non-trivially under the
Lorentz group, as discussed in §5. For example, in §2,3,4 we dealt

with fields ¢ that transformed merely as scalars under the Poincare

group &
(U™ (x) = i .

More generally the fields ‘: may transform as a spinor under the

Poincaré transformations

(U0 (2) = 8, u (W0 () (6-2)

vhere S(A) 4s a representation of L: if A is a Lorentz transformation, -

and S(A) = I 4if A 1s a translation. A'lx is x-a if A isa

translation.

In the notation t: the Greek indices are the spinor indices and the
Roman indices are the gauge indices. Lorentz transformations act only

on the g-index and gauge transfomations act only on the a-index.

Defiuition: The full group of gauge and Poincaré transformations is called
the relativistic gauge group. We denote it by @2 .

Below we use the notaticn g, to mean gA(x) = g( A'lx) .

Propcsition 6.1. i) U _, U U U =V _, . .
g1 Al g A 1AL

i RPN O ST ST AT VTN e 2l u'ilj

SERT W

v SRR ¥ 0Pyt ot MO -
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ii) The gauge group S 1is a normal subgroup of @£ .
11i) @4 1s a semi-direct product of 4 and @ .

Proof. To prove (i) we proceed directlyi

(U _,U _,0u¢)? (x)
gt atga ©

= (U _,(U_,uU4%) (x)
81 I\lg/\ o

0™(e"Hx)) (U _,u v 9)3(x)
A BA

b

D‘b(s'l(z) )8, 50 (A'l(UgvAv )s

v (Ax)

(™M x))8 (A D (@(Ax)IS o (NS ()

p°°(6 M (x)e( )95 (x)

=@, 9@
e 8
A

From (1) we have U QU0 =U and therefore the gauge group
AT g A -1

A

is invariant under inner automorphisms of €4 (invariance under inner
automorphisms by S 4tself is trivial). Consequently J is a normal
subgroup of @4 . To show that it is a semi-direct product let (g,A)

represent the transformation USUA . The product of two cuch trans-

formations is then
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(8,0 (g',A') = U UL,

AR LELAR

U ,U ,=U_, VU,
88, M " g8\ M

(ss,‘\ s M)

Proposition 6.2. let w,0€.5 , let m belong to the Lie algebra of

the Lorentz group L:_ » and M the infinitesimal generator of the action

(6-2) corresponding to m . (We will compute M below). Let P“ generate

the translations. Then

(1) (o,0] ;, » p(x) =w‘(x)°b(")°m Ta

(11) [P“.‘D] =41 b”w

(1i1) (M0} = D 0w x¥ .
u v

Equations (ii) and (1i1) show that the commutators of infinitesimal gauge
and Poincaré transformations are in the gauge algebra. This means that
f is an ideal in @4 , vhich we should expect, since J is a normal
subgroup of @4 . |

We do not need M bdut for completeness we compute it. Yet

(U)o = 5, (Mg (A )

A=I+tn S=I+ ¢ty

UA-I'.‘W .




e

b1~
We have

((x +tM)y) (x) = (I+1E) e (X - tax) .

co' ¥

Coaoparing coefficients of ¢t we find

(M)o(zl,) » zcal'ol - n“v va“'q

Proof of (6.2). (1) has alresdy been done. From (6.1)(1) we have

(e™ v _IQ“OAQ)(::) -ee MY
A :

where ea:(x) = exp o*(x)Ta . Now replace ¢ by &*°, U, by M .
ta

and A by e  ; expand both sices in power series; and collect the
coefficients of st . Keeping cnly lowest terms, we have

(I - sw)(1= tN) (I +ow) (I + tM)Y
= (X -sw)(X +m,'\)0

(T - st{M,0])9 = (I - 80(x) ) (I + a0x + tmx))9

= (I+ lt(b“m)n”yxv)t

Therefore [M,»] 4s an infinitesimal gauge transformation, namely

-(g“o)(-“vx") . Part (11) is even casier to prove.




Action of the relativistic w the gauge

potentials Qll and the covariant deri: cives

As ve sav in §2 the gauge potentials Q“ transfora according to

E the law

, . Qe Cre®pye™®
] % Tuhu " ° 0
This action is not linear, though it is a group action. In fact

a a0 -w -0, O - ~g
g w: Q“_ ee“h“e, e _+eemo“(e e ")

= eoer“e-me.o + eob»e-o
+ ea(e“'o“e'w)e'o
- ec(e“h“e"" + e“’a“e"")e"’
4/ -0

+ede
¢ %

= f(ﬁ”) -

The infinitesimal generator of thia (nonlinear) action is found by

replacing « by tw and expanding in powers of t . The coefficient
of L 4s then the infinitesimal generator of the action and is

NCRESCURES Y2

We may formally think of the X y o8 vector flelds. In that case their

2 i
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commutator is formally cbtained by the méthods of proof of proposition
6.2(11) and (111). That is wé form the product

¢ 0 ¢80 glw 80 o

[N

and compute the coefficient of st . The result is that

[Xm.xa] = xtwo(‘]

The covariant derivatives D“ however, transform under a linear
“action of the gauge group; namely

D' =e™ ™
N
and the infinitesimal generator of this action is

IO.D“I » (m.a“l + [@,Q “)

- (0.0“1 -be --h(q“) .

Note that this action is linear omn the D“ but nonlinear on the Q“.
Under the action of the Poincaré group, the n“ transform as &

h-vector (also the q“) .




